Periodic representations and rational approximations of square roots
نویسندگان
چکیده
In this paper the properties of Rédei rational functions are used to derive rational approximations for square roots and both Newton and Padé approximations are given as particular cases. As a consequence, such approximations can be derived directly by power matrices. Moreover, Rédei rational functions are introduced as convergents of particular periodic continued fractions and are applied for approximating square roots in the field of p-adic numbers and to study periodic representations. Using the results over the real numbers, we show how to construct periodic continued fractions and approximations of square roots which are simultaneously valid in the real and in the p-adic field. c ⃝ 2013 Elsevier Inc. All rights reserved.
منابع مشابه
QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملProgram for generating tables of SU(3) coupling coefficients
A C-Language program which tabulates the isoscalar factors and ClebschGordan coefficients for products of representations in SU(3) is presented. These are efficiently computed using recursion relations, and the results are presented in exact precision as square roots of rational numbers. Output is in LTEX format.
متن کامل2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions
The Lanczos process constructs a sequence of orthonormal vectors vm spanning a nested sequence of Krylov subspaces generated by a hermitian matrix A and some starting vector b. In this paper we show how to cheaply recover a secondary Lanczos process, starting at an arbitrary Lanczos vector vm and how to use this secondary process to efficiently obtain computable error estimates and error bounds...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملExplicit Matrices for Irreducible Representations of Weyl Groups
We present algorithms for constructing explicit matrices for every irreducible representation of a Weyl group, with particular emphasis on the exceptional groups. The algorithms we present will produce representing matrices in either of two forms: real orthogonal, with matrix entries that are square roots of rationals, or rational and seminormal. In both cases, the matrices are “hereditary” in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 175 شماره
صفحات -
تاریخ انتشار 2013